If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+80x-460=0
a = 5; b = 80; c = -460;
Δ = b2-4ac
Δ = 802-4·5·(-460)
Δ = 15600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15600}=\sqrt{400*39}=\sqrt{400}*\sqrt{39}=20\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-20\sqrt{39}}{2*5}=\frac{-80-20\sqrt{39}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+20\sqrt{39}}{2*5}=\frac{-80+20\sqrt{39}}{10} $
| 11=7+(m÷4) | | 22-5(6v-1=-63 | | 12+x-10x=-9x+6 | | 8^x-3=9 | | 2(3x-4)=5x-(3x+2) | | 2x=x-3+4 | | 1/7z+8=-6/7z | | 8x+6=8(x-1) | | 3x-x+3-2=6x-2+4x-1 | | (2t^2)+13t-60=0 | | 25x-13=45x-15 | | 36=n-1/5n | | 0=7t^2-6t-15 | | 18×k=90 | | 5(2a-3)=3(1a-19) | | 7w-3(4w+8=11 | | 7(2x-3)+5(3x-6)=0 | | 18=-3(1+9n)-3(8+6n) | | 6=w|8 | | 3/7x+5=-4/7x-2 | | |12n+4|=0 | | -1/2=y-3/7 | | N+12=6+7n | | -18.31+8.3a=-16.78-9.4a+3.78 | | 8/9+1/10x=5 | | 3/2x-7=-2/3x+1 | | 3/2x-1+5/3-2x=0 | | H(t)=-16t^2+192+6 | | 4n^2+2n-4=0 | | 3x-8(2x+3)=-6(2x+3) | | -17/6=119/t | | 7x+23=x+17 |